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Abstract
A very simple procedure for studying the statistical properties of particle
counting is shown. The output of a Geiger tube is connected to the parallel
port of a PC which writes onto a file the time at which a particle was detected.
From these data both the distribution probability P(n) of counting n particles
in a given time and the probability distribution P(t) of time intervals can be
easily measured. The device also allows the implementation of an artificial
dead time. Effects of dead time on the above distributions are studied. Further
exercises are suggested.

This article is dedicated to the memory of Professor Jose Campos Gutierrez
who introduced the authors to the ‘mysteries’ of counting statistics.

1. Introduction

Many situations in everyday life consist of a sequence of random events: arrivals at a serving
window, births and deaths, and telephone calls to name but a few. In science many processes are
also random such as nuclear disintegration, atomic and molecular de-excitation and electron
emission. Radioactive samples provide a handy source of random events in the student
laboratory. Because of the statistical nature of nuclear disintegration, the number of ionizing
particles emitted by a radioactive source in a given time is subject to fluctuations which follow
the Poisson statistics [1–3]. In fact the conditions for the Poisson statistics are also fulfilled
in many other counting experiments, for instance, in high-energy physics [4]. Understanding
counting statistics is of utmost importance since the associated fluctuations are very often the
main source of experimental uncertainties.

Many properties of counting statistics can be easily studied in the student laboratory by
representing on a histogram the number of particles emitted by a large-period radioactive
source in a given time interval. Particle detection can be achieved using a Geiger tube or
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Figure 1. (a) Parallel port connections. (b) RC circuit for shortening a long Geiger signal.

a scintillator detector. Although, in principle counting could be carried out by hand using
a simple counter an automatic procedure is more convenient to get enough statistics in a
reasonable time. For this end, many commercial data-taking cards are available for PCs.

As a consequence of Poisson statistics, the probability distribution of time intervals, that
is, the probability for a random event to be followed by another one in time t, decays as
an exponential function of t. Timing detector signals are usually carried out by means of a
time-to-amplitude converter (TAC) which gives an output of amplitude proportional to the
time interval between the stop signal and the start signal. The amplitude spectrum which can
be registered by a multichannel analyser, provides the time interval distribution.

Unfortunately, professional nuclear electronics for the counting and timing of the output
signals of a nuclear detector is expensive. Several methods suitable for the student laboratory
have been proposed [5, 6]. In this paper a very simple procedure is shown where a PC writes
on a file the time at which a Geiger tube is fired without need for any additional electronic
unit/card. Using this procedure, properties of the Poisson statistics (section 3), as well as
the effects of dead time on particle counting (section 4), can be easily shown in the student
laboratory.

2. Counting and timing Geiger signals

As already mentioned, counting and timing of the signals from a nuclear detector are usually
achieved by means of electronics for pulse signal processing [3, 4]. However, output signals
at a low rate can also be processed by using the parallel port of a PC with no additional
electronics. This technique, which will be described next, has been applied in this work for
the counting and timing of Geiger signals.

Although the PC parallel port was originally designed to attach printers, it can be used
as a general port for any device or application that matches its input/output capabilities.
In its standard configuration, it is provided with 12 TTL-buffer output points (figure 1(a)),
which are latched and can be written and read under program control using the processor In
or Out instruction. This port also has five steady-state input points that may be read using
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the processor’s In instruction. In addition, one input can also be used to create a processor
interruption under program control. The input/output signals are made available at the 25-
pin, D-type female connector. Assuming the output of the Geiger tube is a 5 V pulse, the
experiment requires no hardware besides just connecting the Geiger signal to one of the input
pins in the parallel port (see figure 1(a)).

For the standard parallel port, pin 11 is an inverting input and so will be most convenient
if the output signals from the Geiger are negative logic (logical 1 = 0 V/logical 0 = 5 V).
Any of the other input pins should be used if Geiger signals are positive logic. In our particular
case the output pulses from the Geiger electronics were very long, and that caused our computer
to count each pulse several times. Shortening of the pulses was accomplished with a simple
RC circuit (figure 1(b)) which uses a +5 V output from pin 9 (OUT P,128 when initiating the
program).

The required software is also extremely simple. For instance, in BASIC, just the following
three lines suffice:

10 DEF SEG=0:P=PEEK(1032)+256*PEEK(1033) ’Localize port direction
20 WAIT P+1,128:PRINT TIMER ’Wait for signal, annotate arriving time
30 IF INKEY$=”z” THEN STOP ELSE GOTO 20 ’Repeat loop and stop control

In the above example, the 128 value in the WAIT command assumes the 11 input pin is
being used. Respectively values 64, 32, 16, 8 would be required if input pins 10, 12, 13 or 15
were used. Additional extensions of the above programs could be as follows.

(1) Inserting a software dead time for didactic purposes (see section 4). This can be easily
achieved by inserting a delay loop inbetween lines 20 and 30.

(2) Printing to a file. This can be easily accomplished by initiating OPEN ‘o’,#1, ‘filename’
and substituting ‘PRINT TIMER’ by ‘PRINT#1 TIMER’.

(3) The time origin can be discounted by a first sentence T0 = TIMER, and substituting
‘PRINT TIMER’ by ‘PRINT TIMER-T0’.

(4) Instead of the ‘z-push’ stop procedure, the data acquisition process can be interrupted after
suitable predetermined conditions with simple modifications of the code. For instance
after a given number of recorded events (by inserting an event counter or FOR-NEXT
loop), after a time interval TMAX (inserting an IF (TIMER-T0) > TMAX THEN STOP)
or at a fixed time TFIX (inserting an IF TIMER > TFIX THEN STOP).

This technique has been applied in our student lab using various PCs ranging from
Pentium I to Pentium IV. The BASIC control program has been compiled and the executable
file run on any Windows operating system. Under MS-DOS and Windows 3.x/95/98/ME
operating systems, applications can directly access system hardware and consequently, in any
of those environments the very simple procedure described here will work correctly. Being
more secure environments, Windows NT/2000/XP operating systems assign some privileges
and restrictions to different types of programs, and direct port access is forbidden for user
applications. Consequently, under these operating systems, previous installation of some
‘kernel mode drive’ or ‘privilege remapping’ may be necessary in order to assure parallel port
access. Simple tools for that purpose can be found at many Internet sites [7] and are also well
described in the technical literature [8].

The set-up consists of a Geiger counter, a low activity radioactive source (e.g. 2 µC of
60Co) and the PC. The Geiger output signal is directed to the PC parallel port as explained
above. As a result of data acquisition an ASCII file is written which consists of a certain
number, N, of values, t1, t2, . . . , ti , . . . , tN , each being the time when the Geiger was fired. As
shown in next few sections, this time series allows both counting and timing of the particles.



402 F Arqueros et al

0 2 4 6 8
n

0

0.1

0.2

0.3

0.4

P
 (

n)

Figure 2. Experimental probability distribution of n events in a counting period of 0.5 s (filled
circles) and the corresponding Poisson distribution for 〈n〉 = 1.20 (bars).
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Figure 3. Experimental probability distribution of n events in a counting period of 4.0 s (filled
circles) and the corresponding Poisson distribution for 〈n〉 = 9.60 (bars).

3. Checking the Poisson statistics

Let us assume a radioactive source emitting particles which are detected by a counter at a
rate A. The number of particles n detected in a time �t is a statistical variable following the
Poisson law

P(n) = 〈n〉n
n!

e−〈n〉 (1)

with average value 〈n〉 = A × �t .
The data recorded by our simple set-up allows us to check equation (1). First a time period

�t is chosen. Then the series is split into M = T/�t intervals, where the total data-taking
time T should be as large as possible. For m = 1, 2, . . . ,M the number of events ti satisfying
(m−1)�t < ti < m�t is counted. Following this procedure a histogram of the event number
with M entries is achieved. Since �t can be freely chosen after data taking, one time series
allows checking equation (1) for different 〈n〉 values.

As an example, the results of an acquisition period of T = 13 100 s with a total of
N = 31 439 events (average rate of about 2.4 Hz) have been studied. For this measurement no
artificial dead time has been applied in the writing algorithm (see sections 2 and 4). Figures 2
and 3 show P(n) versus n for �t values of 0.5 and 4.0 s respectively. Data (filled circles) are
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Figure 4. Histogram of time intervals for a counting rate of A = 2.40 s−1 (circles). The continuous
line represents a fit to equation (3).

compared with the Poisson statistics (bars) for the experimental mean value 〈n〉 = N�t/T .
In these tests 〈n〉 equalled 1.20 and 9.60 for �t values of 0.5 and 4.0 s respectively.
Figures 2 and 3 show a very good agreement between theory and experiment. As is well
known the standard deviation of the Poisson distribution is σ(n) =

√〈n〉 [3]. In our example
the theoretical value of σ(n) =

√
N

T
�t was 1.095 and 3.098, in agreement with the standard

deviation of the experimental distributions, 1.10 and 3.25 for counting periods of 0.5 and
4.0 s respectively.

The probability distribution of time intervals separating random events is of practical
interest in radiation measurements [3]. The probability for a detection to be followed by the
next one in time between t and t + dt is given by

P(t) dt = A e−At dt. (2)

This result can be easily deduced from equation (1) since P(t) dt is the probability of zero
detections in a time interval t and one detection in between t and t + dt . P(t) can be measured
from our time series by representing on a histogram the time difference between successive
events, ti−1 − ti . This histogram has been represented in figure 4 which shows a linear
relation between the logarithm of the probability and t. The corresponding normalized
distribution fits an exponential function

P(t) = A1 e−A2t (3)

with parameters A1 = 2.41 ± 0.02 s−1 and A2 = 2.40 ± 0.07 s−1. The expected result
from equation (2) is A1 = A2 = A = 2.400 ± 0.013 s−1 since A = N/T with statistical
uncertainty of

√
N/T .

Note that in equation (2) the origin can be any random time not necessarily related to a
previous counter signal. This well-known fact can be easily checked using our data file. In the
first place, a sample of random times tr uniformly distributed between t1 and tN is generated.
Then a histogram of tr − tj where tj+1 < tr < tj provides the probability distribution of time
intervals with origin unrelated with counter signals.

In general the probability of detecting a group of m events after a previous one, that is the
probability of m − 1 events in the time interval 0–t and one event between t and t + dt is given
by

P(t) dt = Amtm−1

(m − 1)!
e−At dt (4)
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Figure 5. Probability time distribution for groups of m = 1, 3, 6 and 9 events. The experimental
data (filled circles) agree with the theoretical expectations (continuous line) of equation (4).

where A is the average rate of events [3]. This situation is found when the detector signals
are sent to a data buffer which produces an output pulse when m input signals have been
accumulated allowing data recording at a lower rate. Obviously equation (2) is a particular
case (m = 1) of this general distribution. Our data file allows an experimental verification of
equation (4). In figure 5 the normalized histogram of ti−1 − ti−1+m for groups of m = 1, 3, 6
and 9 events has been represented in very good agreement with the theoretical expectations
(the continuous line). The origin of each group ti−1 has been chosen equal to the arrival time
of the first event after the previous group and thus every event has been only included in one
group.

The standard deviation σ(t) for the probability distribution of m events fulfils the following
relation [3]

σ(t)

〈t〉 = 1√
m

(5)

indicating that the per cent fluctuations in the time interval for a group of events decrease
with the group size. In the limiting case m → ∞, an output signal in coincidence with the
end of the group behaves as good as a clock, at a rate of

1

〈t〉 = A

m
(6)

with no fluctuations. As a further exercise, we suggest readers test experimentally
equation (5) with our technique by recording a large data sample (e.g. 24 h data taking at
a rate of 3 Hz).

4. Dead-time effects on the Poisson statistics

In general, all particle counters become ‘blind’ for a certain time after a detection. The origin
of this dead time depends on the counter design. For instance in Geiger tubes, an ionizing
particle produces a discharge. Until the discharge is fully quenched, a further particle does
not produce any observable effect on the detector. In addition, very often data acquisition
contributes to the total dead time, because while a signal is being processed no further event
is allowed in the counting chain. The artificial dead time introduced in our writing algorithm
(see section 2) emulates this acquisition dead time.

Results of the Poisson statistics rely on the fact that the events are random, that is there is
no correlation among them. Obviously dead time introduces a constraint in the time interval
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Figure 6. Histogram of time intervals for a counting device with a dead time of τ ≈ 0.2 s (filled
circles). Note the sharp cut at t = τ . The straight line is a fit to equation (3) for t > τ which gives
a value of the true rate Av = 2.48 s−1.

between successive events. Thus, both distributions P(n) and P(t) are expected to deviate
from equations (1) and (2) respectively when using detectors and/or acquisition systems with
non-negligible dead times.

Using our device, a time series has been acquired with an artificial dead time τ of about
0.2 s larger than the intrinsic Geiger dead time. The sample consisted of N = 52 936 events
in an acquisition time of T = 31 510 s. As expected, P(t) shows a sharp drop below t = τ

and P(t < τ) = 0 (see figure 6). For t > τ the distribution is not modified and thus it
should follow equation (2). Experimental data fit equation (3) with A1 = 2.52 ± 0.03 s−1 and
A2 = 2.51 ± 0.01 s−1. From this result a true rate, Av , of 2.48 s−1 is inferred. The measured
rate Am = N/T = 1.680 s−1 is significantly lower because of dead-time losses. The relation
between Am and Av is given by the simple formula1 [3]

Av = Am/(1 − τAm). (7)

Dead time can be obtained from equation (7) since both Am and Av are accurately
measured. In our case a value of τ = 198 ± 4 ms is inferred, consistent with that obtained
from the sharp cut in figure 6. This technique, which provides an accurate measure of
dead-time loses [6], is often used in real experiments [9].

The effect of dead time on the P(n) distribution can also be studied with our set-up. The
corresponding theory has been developed in detail by Müller [10]. According to equation (7)
the modified distribution Pm(n) has a mean value

〈n〉m = 〈n〉
1 + τAv

(8)

where 〈n〉 = Av�t . The standard deviation of the distribution σm(n) is shortened by the
law [10]

σ 2
m(n) = σ 2(n)

(1 + τAv)3
= 〈n〉

(1 + τAv)3
. (9)

The above equation is valid as long as the resulting σm(n) is not too small (σm(n) � 1 is
enough). Therefore the effect of dead time is a shifting and narrowing of the original Poisson
distribution.
1 In fact this relation is only valid for the so-called non-paralysable model of dead time. In counters following this
model, like our case, dead time is not extended by particles arriving while the detector is off due to dead time from a
previous particle.
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Figure 7. Probability distribution of n events with a dead time of about 0.2 s in a counting period
of 4.0 s. The measured distribution Pm(n) (filled circles) is significantly shifted and narrowed as
compared with the Poisson P(n) distribution (bars).

The above data series registered with dead time has been used to experimentally study these
features. An interval �t = 4 s has been chosen. The experimental distribution Pm(n) (filled
circles) has been compared in figure 7 with the Poisson distribution P(n) (bars) for 〈n〉 = 9.92
(this value has been inferred from the true rate given by the time interval distribution). The
figure clearly shows the shifting and narrowing of the distribution predicted above.

Dead time can be determined by the simultaneous measurement of mean value and width
of Pm(n). From equations (8) and (9)

τAv = 3

√
〈n〉m
σ 2

m

− 1 (10)

is inferred. The standard deviation of the measured Pm(n) distribution is found to be
σm(n) = 1.79 while 〈n〉m = 6.72. From these values a dead time of 190 ms is inferred
(equation (10)), in good agreement with the result obtained from the time interval distribution.

5. Conclusions and further suggestions

A simple procedure has been shown to write onto a file the time at which a Geiger counter is
fired. The counter output feeds the parallel port of a PC without any need for further electronic
cards or modules. By means of this device and a low activity radioactive source, a large data
sample can be stored allowing accurate experimental studies of the properties of counting
statistics. In the first place both the distribution probability P(n) of counting n events in a
given time and the probability distribution of time intervals P(t) are found to follow very
precisely the predictions of the Poisson statistics. In addition, properties of the probability
distribution of groups of events can be studied.

A delay loop has been introduced in the acquisition software which enlarges the intrinsic
Geiger dead time. The effect of dead time on both P(t) and P(n) can be studied in detail.
From both distributions an accurate measure of the true rate can be performed.

From the file written by the PC many other interesting properties of the counting statistics
can be shown in the student laboratory. We suggest a further exercise related to the effect of
dead time on the P(t) distribution. In the case of dead time, the probability distribution of
time intervals with random origin (see section 3) is demonstrated to follow the law [10]
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P(t) = Av exp(−Avτ) for t < τ (11)

P(t) = Av exp(−Avt) for t � τ. (12)

This result can also be checked using our technique by recording a series similar to that
in section 4 and applying the procedure described in section 3 for a random origin.
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