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Abstract
In this paper, a simple MATLAB-based PC program that enables the computer
to function as a replacement for the electronic scalar-counter system associated
with a Geiger–Müller (GM) tube is described. The program utilizes the ability
of MATLAB to acquire data directly from the computer sound card. The signal
from the GM tube is applied to the computer sound card via the line in port.
All standard GM experiments, pulse shape and statistical analysis experiments
can be carried out using this system. A new visual demonstration of dead time
effects is also presented.

Introduction

The use of a computer sound card as a data acquisition tool has gained increasing interest
recently. With two independent analog input channels and the inherited analog to digital
(A/D) conversion ability, the sound card is well suited to operate as a data acquisition device.
Since all personal computers are equipped with a sound card, it becomes natural to attempt
to use this devise as an inexpensive, reasonably fast and handy data acquisition tool. The
sampling rate of a typical sound card can be as high as 44 100 kHz. The author has suggested
using this device in obtaining Langmuir probe I–V characteristic data [1] and to demonstrate
the Doppler broadening of sound waves [2]. A good review about the sound card advantages
and limitation are presented in [3].

A GM tube is a very useful and instructive piece of equipment in most physics
undergraduate laboratories. The accessory equipment used in conjunction with a GM tube are
an HT power supply, an electronic pulse scalar and a pulse counter. Several basic undergraduate
experiments can be setup using a GM counter system. These include determination of a
GM plateau voltage range, the detector dead time, radioactivity half life, x-ray diffraction
experiment, etc. Although GM tubes and power supplies are relatively cheap and widely
available in most labs, the availability of scalar-counter systems may be very much limited
especially in developing countries (this is the case with us at least). On the other hand, a
large number of P1, P2 and P3 desktop and laptop computers are being abandoned simply
because new faster and more capable generations are on the market. Increasing the number of
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Figure 1. The basic experimental setup.

independently operating GM systems in any undergraduate physics laboratory will certainly
give the lab instructor more manoeuvres with the number of experiments using this system that
can be installed simultaneously. Many laboratories use computer data acquisition systems to
acquire and analyse GM counter data using the LabView software. However, this can only be
done in conjunction with some data acquisition hardware. Arqueros et al [4] have suggested
an interesting method for applying the GM signal into the PC parallel port.

It is our purpose here to present and describe simple MATLAB-based software that uses
the PC sound card for data acquisition and analysis of GM tube pulses. The advantages of
using the soundcard are related to both its relatively high speed sampling rate as compared to
other data acquisition devices and to is easy access availability in all computers.

Experimental setup

The circuit diagram used is shown in figure 1. The circuit produces positive pulses that are
applied directly to the input jack of the PC sound card. Alternative circuits with negative
pulse configuration can be equally used. This can be done after changing all the > signs to
< signs for the three if loops in the software. The only restriction in both cases is that the
absolute pulse height is within the 1 V maximum safe limit of most sound cards. Pulses with
higher heights will be clipped at 1 V by the sound card. Very high voltages (over 10 V) may
cause damage to the sound card. In our case, the values of the resistance and capacitance,
R = 4.7 k�,C = 100 nF, produced pulses of about 0.6 V. Lower values of RC can be
selected, but at the expense of pulse height. The sound card can easily detect a pulse of about
20 mV with over 3 dB signal-to-noise ratio.

The software

The software uses the MATLAB data acquisition toolbox to acquire analog data from one or
both channels of the ‘line in’ port of the computer sound card. The software is very simple
to use. Two independent MATLAB M-files named GM1(N,T) and GM2(N,T) are listed
in appendixes A and B. They can be directly copied and pasted to new MATLAB M-files.
Saving these file in the MATLAB ‘work’ directory (this is where MATLAB keeps all user
programs and data files by default) will make the system ready. The only prerequisite for



Operating a Geiger–Müller tube using the PC sound card 59

(a) (b)

Figure 2. In the pulse identification process, the program counts extreme points as pulses: (a) is
counted as one pulse and (b) is counted as two pulses.

running the programs is to have any version of MATLAB software installed on the PC. Typing
the statement X = GM1(N,T), where ‘N’ is the number of times the program will repeat
measurements for N separate periods of time of T s each, will get the PC to work as a standard
scalar-counter system. The total counts for each period T will be output in X. The program
uses two complementary criteria to identify each pulse. The first is that the voltage is above a
certain limit. This is necessary to exclude any noise interference and also to drastically reduce
the CPU time. This limit is set to 0.4 V by the software default. It can be changed however
from the ‘if’ statements in line 21 in GM1 or GM2. The second is that the values of the two
points to the right and to the left of a particular point under consideration should be lower than
the voltage value of the considered point. This ensures that for several points constituting a
particular pulse, only one extreme point is counted. This also helps reduce system dead time
effects. This is because even if two pulses arrive within a time period smaller than the full
electronic pulse width resulting in some overlapping, the program has the capability to count
both of them. This is demonstrated in figure 2.

The number of counts registered during the run appears on the main MATLAB work space
as ‘total counts’. It will also give the Geiger pulse width and the area under the pulse. The value
for the width obtained represents the pulse width at half maximum. It is evaluated by dividing
the integrated area under the pulse by twice the pulse height (triangular approximation). The
input variable N can take any desired value enabling the program to run for any length of time
even unattended. Due to the fact that the program buffers the data to the RAM, the second
input variable T measured in seconds is limited by the size of the RAM of the computer used.
Using T = 50 s did not produce a memory overflow on a P1 64 MB RAM, an almost obsolete
computer. Higher T values can be used on computers having higher RAM. Using T = 480 s
just came short of producing a memory overflow on a P4 524 MB RAM computer. The total
number of counts is the sum of the number of all pulses detected over the full period of time
N × T. For example, typing the statement X = GM1(1,1) will make the program run for 1 s only
while the statement X = GM1(600,60) will induce the program to run for ten continuous hours
divided into periods of 1 min each. Besides the numerical data for the total counts registered,
the individual counts obtained over each period T, the mean, the standard deviation of the N
measurements over T s each and the pulse width, the program will output a dynamic plot of
counts registered over each run for a time period T. This program is suitable for direct use
of a PC as a substitution for the standard scalar-counter system and for monitoring radiation
over prolonged periods of time. PC loudspeakers or headphones can be turned on to hear the
sounds of actual pulses.
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Figure 3. Oscilloscope screen picture of an actual GM pulse.

The second program GM2(N,T) functions in a way very similar to GM1, but it is designed
to perform some additional tasks. This program will output the following subplots:

(1) A pulse shape subplot which corresponds to the projection of one typical pulse as detected
by the computer. The pulse height is in volts, and the time is in seconds. This is very
similar to what one would obtain using an oscilloscope. A typical actual oscilloscope
pulse obtained is shown in figure 3. This pulse compares well with that shown in
figure 5(a)

(2) A 50 bin histogram representing the time distribution measured in seconds between all
successive pulses for all pulses throughout the complete run. This demonstrates the
Poisson distribution nature of these times.

(3) A 20 bin histogram of the counts/s averaged over each period of T s throughout the
complete run.

(4) A plot of the average counts per second (averaged over T s) against the time in seconds.
This will indicate if there is any significant change in the level of radioactivity at any
instance in time.

Experimentation

The first experiment carried out using this system is the standard count–voltage dependence.
The voltage plateau is determined using a radioactive source. The results are shown in
figure 4. The measurements are for 3 min using a Co57 radioactive source with activity of
about 0.14 μCi. These results are similar to those recorded using the standard electronic scalar-
counter system, as shown in the same figure. In both cases the threshold, the plateau and the
proportional voltage regions were the same. It is worth mentioning here that the tube is over
30 years old and the plateau region is not that wide. Other experiments using GM counters
such as x-ray diffraction, γ ray absorption and determination of counter dead time are currently
being run by students in our laboratories using almost obsolete P1 and P2 computers.
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Figure 4. Count–voltage characteristics obtained using a PC and a standard scalar-counter system.

(a) (b)

(c) (d)

Figure 5. Plots produces by the program GM2 after a 10 min run. The radioactive source is
removed during the seventh minute.

Figure 5 shows typical plots produced by the program GM2 after a 10 min run in which
the radioactive source was removed during the seventh minute.

The program GM2 is equipped with facilities to allow for a more detailed analysis of data.
The program can be activated by typing the statement [x1, x2, x3, x4] = GM2(N,T) (or any
other desired string variable names for that matter) in a MATLAB work space. The numerical
output will include four arrays. The output array x1 represents the number of counts registered
during each sub-period T. The size of this array is equal to N. The array x2 represents the time
difference between any two successive pulses registered over the entire run. The size of this
array is equal to the total number of counts registered minus one count. The two variables
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Figure 6. Results of a 1 h run with 60 s sub-periods.

x3 and x4 are the pulse height–time data corresponding to 20 points distributed on the two
sides of the peak of the pulse. All four of these variables can be saved on a hard disk for any
further analysis. MATLAB saved data can be directly communicated to the EXCEL Microsoft
program.

Radioactive decay is regarded as a good tool for demonstrating the Poisson distribution
law. The fact that MATLAB contains both statistical analysis and curve-fitting toolboxes
besides the data acquisition one makes the study of the statistical nature of radioactivity all
the more handy. By simply selecting the value of the argument N large enough, one can
study the distribution of a repeated number of counts. Figure 6 shows the results of running
the program for 1 h. For both figures 5 and 6, the plots are presented in the same form
the MATLAB produces by default, and no editing is made. As a simple demonstration of
how these results can be used for a further analysis, the data of figure 6(b) representing the
distribution of time periods between successive pulses are plotted in a magnified form in
figure 7.

The solid line represents the result of the fit to the Poisson distribution law of the form

P(t) dt = K1 e−K2t dt. (1)

The data of the first two bins in the histogram are not included in the fit. This is because
these two bins correspond to successive pulses separated by very short periods of time where
the effect of counter dead time is at work. This point will be further discussed later. The
constants K1 and K2 are left as free parameters to be determined by the fitting program.
Over 95% confidence level fit is obtained with K1 = 2587.6 and K2 = 3.1568 s−1. The fitted
equation is in good agreement with experimental data. One interesting feature in the histogram
is a significant deficiency of events in the first bin of the histogram representing events with
a very small time separation between successive pulses. This is a direct manifestation of
the counter dead time effects. The system does not have any problem in registering pulses
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Figure 7. Distribution of time periods between all successive pulses.

separated in time by some fraction of the pulse width. However, pulses arriving at shorter
times may not be counted properly. This is a well-known dead time effect, and dead time
corrections are customarily applied to counter measurements. The counting rate dead time
correction equation is

N = n

1 − nτ
(2)

τ = N − n

nN
, (3)

where n is the counting rate measured by the detector, N is the real counting rate and τ is the
detecting system dead time.

Figure 7 can lend itself as a tool for an approximate yet demonstrative method for
evaluating the dead time. The total number of counts measured on this histogram is n =
10 954. Now if one tries to compensate for the missed events in the first two bins on the
histogram by subtracting the fit extrapolation to the first two bins excluded previously, a total
of about 1466 events would be needed to bring the data of these two bins in line with the
fitted Poisson distribution curve well describing the rest of the data. The above two numbers
when added can give us the approximate actual total counts N = 12 400 corrected for dead
time effects. Substituting for N and n in equation (3) will give us τ = 10.8 μs. This result
is approximately equal to about one fifth of the pulse width calculated by the program. This
may be considered as an indication that the program is identifying and consequently counting
overlapped pulses in the way described above (figure 1).

Several other experiments can be carried out using this software. For example, students
can study the effect of varying the circuit elements R and C on pulse properties. Another
experiment is related to the calculation of the number of electron ion pairs produced. This can
be obtained from the area under the pulse. Pulse rise and decay times can also be analysed.
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Conclusions

The above description represents only samples of the statistical and physical analysis that
can be performed using the data output of this system. The main advantage of using this or
similar data acquisition systems is the ability not only to count pulses over any desired period
of time, but also to record the time between all successive pulses, and pulse shapes. Several
regimes for collecting, averaging and analysing groups of data can be designed depending on
a particular point of interest.

Experimental details

(1) The line in recording level controls of the audio setting of the PC must be selected.
(2) It is advisable to check the pulse height by an oscilloscope before applying it to a PC.
(3) Before running the program for long periods of time, a test run using GM2 for a few

seconds duration is useful for checking the pulse shape. A pulse with a plateau at the top
is an indication that the pulses received are higher than 1 V and they have been clipped
by the sound card. This can produce incorrect measurements. In such a case, the value
of the resistance must be reduced to a proper value

Appendix A

function f=GM1(N,T)
k=0;
hold
tic
for j=1:N;
RUN=j
% acquire data
ai=analoginput(‘winsound’);

addchannel(ai,1:2);
ai.samplerate=44100;
ai.samplespertrigger=44100∗T;

ai.triggertype=‘immediat’;
start(ai);
[u1,tt]=getdata(ai);
delete(ai)

clear ai
f(j)=0;
n=max(size(u1));
% Sort out and count pulses
for i=2:n-1;

if u1(i)>.4
if u1(i)>u1(i+1)

if u1(i)>u1(i-1)
f(j)=f(j)+1;
k=k+1;
end

end
end
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end
ttt(j)=toc;
plot(ttt,f)

end
‘Total counts’
sum(f)
‘Average counts per T seconds’
mean(f)
‘standard deviation for N readings of duration T each’
std(f)

Appendix B

function [f,DT,xx,yy]=GM2(N,T)
k=1;
t1=cputime;
for j=1:N;
RUN=j
% acquire data
ai=analoginput(‘winsound’);

addchannel(ai,1:2);
ai.samplerate=44100;
ai.samplespertrigger=44100∗T;

ai.triggertype=‘immediat’;
start(ai);
[u1,tt]=getdata(ai);
delete(ai)

clear ai
f(j)=0;
n=max(size(u1));
% Sourt out and count pulses
tic
for i=2:n-1;

if u1(i)>.5
if u1(i)>u1(i+1)

if u1(i)>u1(i-1)
f(j)=f(j)+1;
TT(k)=tt(i)-toc;

k=k+1;
end

end
end
end

end
% part one plot the pulse
xx=u1;
[a,m]=max(xx);
xx=tt(m-10:m+10);
yy=u1(m-10:m+10);
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yy=yy-min(yy);
‘Area under the puls
Area=trapz(xx,yy)
‘Pulse width (sec)’
Area/(2∗max(yy))
subplot(2,2,1)
plot(xx,yy)
title(‘(a)’)
xlabel(‘time (sec)’)
ylabel(‘height (volts)’)
grid on
%part two produce the time distribution
DT=diff(TT);
kk=find(DT<0);
DT(kk)=[];
a=max(DT);
b=min(DT);
d=a-b;
c=b:d/50:a;
subplot(2,2,2)
hist(DT,c)
title(‘(b)’)
xlabel(‘time between pulses (sec)’)
ylabel(‘No. of pulses’)
grid on
%part three produce the count distribution
subplot(2,2,3)
hist(f,20);
title(‘(c)’)
xlabel(‘count/sec’)
ylabel(‘frequency’)
grid on
t2=cputime;
z=t2-t1;
zz=z/(2∗N):z/N:(z-(z/(2∗N)));
subplot(2,2,4)
plot(zz,f/T)
title(‘(d)’)
xlabel(‘time (sec)’)
ylabel(‘counts/sec’)
grid on
‘Total counts’
sum(f)
‘Mean number of counts per T seconds’
mean(f)
‘Standard deviation of N measurements of T second duration each’
std(f)
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